Смешивание газов. Смешивание газов Смешивание двух объемов газа с разной температурой

Каждый газ в смесях ведет себя так, как будто он один занимает весь объем сосуда: молекулы его рассеиваются равномерно в пространстве и создают свое, так называемое парциальное, давление p i на стенки сосуда. Если смесь находится в равновесном состоянии, температура всех газов одинакова и равна температуре смеси T СМ. Масса смеси равна сумме масс компонентов; давление смеси по закону парциальных давлений Дальтона (1801) равно сумме парциальных давлений:

где n – число компонентов, составляющих смесь.

Английский физик и химик Джон ДАЛЬТОН (1766–1844) сформулировал в 1803 г. закон кратных отношений: если два простых или сложных вещества образуют друг с другом более одного соединения, то массы одного вещества, приходящиеся на одну и ту же массу другого вещества, относятся как целые числа, обычно небольшие. Например, в пяти оксидах азота (N 2 O, NO, N 2 O 3 , NO 2 , N 2 O 5) количество кислорода на одно и то же весовое количество азота относится как 1:2:3:4:5. Дальтон правильно объяснил этот закон атомным строением вещества и способностью атомов одного вещества соединяться с различным количеством атомов другого вещества. При этом Дальтон предложил использовать в химии понятие атомного веса. Зная атомные веса элементов, можно устанавливать меру химических превращений и химических соотношений веществ, а также составлять количественные уравнения реакций. Он впервые (1794) провел исследования и описал дефект зрения, которым страдал сам, – цветовая слепота, позже названный в его честь дальтонизмом.

Половину своей жизни Дальтон даже не подозревал, что с его зрением что-то не так. Он занимался оптикой и химией, но обнаружил свой дефект благодаря увлечению ботаникой. То, что он не мог отличить голубой цветок от розового, он первоначально объяснял путаницей в классификации цветов, а не недостатками его собственного зрения. Дальтон заметил, что цветок, который при свете солнца, был небесно-голубым (точнее, того цвета, что он считал небесно-голубым), при свете свечи выглядел темно-красным. Он обратился к окружающим, но никто такого странного преобразования не видел, за исключением его родного брата. Так Дальтон догадался, что с его зрением что-то не так и что проблема эта наследуема. В 1995 году были проведены исследования сохранившегося глаза Джона Дальтона, в ходе которых выяснилось, что он страдал редкой формой дальтонизма – дейтеранопией. У дейтеранопов отмечается недостаток пигмента М-колбочек, вследствие чего заболевающие относительно нечувствительны к средним длинам волн зеленой части спектра, но при этом воспринимают коротковолновую часть спектра как синий цвет и длинноволновую – как желтый.



Свойства смеси зависят от ее состава, который можно задавать различными способами. Наиболее простой и удобный – задание массового состава, т.е. для каждого газа задается его массовая доля в смеси:

Мольной долей называют отношение числа киломолей данного газа к числу киломолей всей смеси:

где , m i – молекулярная масса i-го компонента.

Величину

называют кажущейся молекулярной массой смеси.

Часто состав смеси задают объемными долями

где V i – парциальный объем i-го компонента, т.е. такой объем, который занимал бы данный газ, если бы его давление было не p i , а p СМ (при той же температуре T СМ), .

Для действительного состояния связь между параметрами определяется уравнением p i ×V CM =m i ×R i ×T СМ, а для условного – p CM ×V i = = m i ×R i ×T СМ. Из равенства правых частей этих уравнений следует p i ×V CM =p CM ×V i , откуда находим две важные формулы:

Важно знать соотношения между величинами g i , у i и r i . Чтобы найти эти соотношения, проведем следующие простые преобразования, не требующие дополнительных пояснений:

Здесь 22,4 – объем 1 кмоля любого газа при нормальных условиях, м 3 (по закону Авогадро именно таким объемом обладает большинство газов, хотя бывают и небольшие отклонения).

Объемная доля

Поскольку правые части 2 последних формул одинаковы, можно заключить, что мольные доли равны объемным: y i = r i .

Еще одно соотношение получим так:

Заменив y i на r i , запишем его по-другому:

r i ×m i =g i ×m СМ.

Просуммируем полученные формулы для всех n компонентов смеси. В результате будем иметь

поскольку .

На основании свойства аддитивности для расчета теплоемкостей смеси можно записать следующие формулы:

Величину газовой постоянной находят аналогично:

или же, как и для любого газа, через универсальную газовую постоянную по формуле R CM = 8314/m CM .

Рассмотрим подробнее два наиболее типичных способа смешивания.

1. Смешивание газов путем объединения отдельных объемов. Пусть имеется n разных газов, находящихся в отдельных сосудах объемами V 1 , V 2 , .... Параметры каждого газа р 1 , р 2 , ... и Т 1 , Т 2 , ... Для получения смеси эти объемы объединяют или удалением перегородок, или с помощью коротких трубопроводов достаточно большого сечения. В результате перетекания и диффузии газов через некоторый промежуток времени получается однородная смесь, массу и объем которой можно определить простым суммированием:

где – масса i-го компонента, R i – его газовая постоянная.

При смешивании не совершается внешней работы и не происходит внешнего теплообмена (dl = 0, dq = 0), а значит, не изменяется и внутренняя энергия каждого газа (du = 0). Поэтому внутренняя энергия смеси будет складываться из внутренней энергии ее компонентов, т.е.

Здесь u СМ = m СМ × с V C М × (T C М – T 0) и u i = m i × с V i × (T i – T 0),

где c Vi – средняя теплоемкость i-го компонента в изобарных процессах.

Подставим приведенные выражения в исходную формулу:

и проведем следующие преобразования: разделим обе части на m СМ (при этом в правой части получим ), раскроем скобки и вынесем за знак суммы постоянную величину T 0:

Если учесть, что , то после приведения подобных слагаемых формула примет вид

Давление смеси найдем из уравнения состояния идеального газа:

Представим мысленно, что образование смеси протекает в два этапа. На первом этапе перегородки между компонентами становятся эластичными и хорошо теплопроводными. Тогда в результате деформаций и теплообмена, протекающих обратимым способом, выравниваются температуры и давления компонентов (они станут равными p СМ и T СМ) и изменяются объемы газов. Энтропия такого состояния будет

На втором этапе перегородки убираются. Тогда в результате диффузии произойдет распространение каждого газа по всему объему, и каждый компонент будет иметь параметры T СМ и p i = r i × p CM , где r i – объемная доля компонента. При этом энтропию смеси можно определить как сумму энтропий компонентов:

Сопоставление данных формул позволяет найти увеличение энтропии от необратимости:

что позволяет легко найти потери работоспособности

Dl = T 0 × Ds НЕОБР.

Если же, например, потребуется разделить смесь на отдельные составляющие, то для этого как минимум потребуется затратить работу Dl.

2. Смешивание газовых потоков – это способ непрерывного получения смесей. Несколько газовых потоков направляют в один выходной канал. Пусть через i-й канал поступает М i газа, кг/с, с параметрами p i и T i . Тогда объемный расход этого потока будет

а скорость

При смешивании потоков скорости газов бывают невысоки и мало различаются между собой. Поэтому разницей скоростей газов можно пренебрегать и считать, что давления p i газов практически одинаковы и равны р СМ.

При постоянстве давления и отсутствии внешнего теплообмена будет иметь место следующий баланс энтальпий:

Поскольку для идеального газа h = с р ×(Т – Т 0), приведенную формулу можно записать и так:

где ; c pi – средняя изобарная теплоемкость i-го компонента.

Проводя преобразования, аналогичные предыдущим, получим

Теперь можно найти объемный расход смеси и ее скорость в выходном канале сечением F ВЫХ.

Чтобы выявить особенности состояний влажного воздуха, мысленно проведем следующий опыт. В некоторый закрытый объем с сухим воздухом поместим небольшое количество воды. В результате ее испарения образуется смесь, которую называют влажным воздухом. Если добавить еще небольшое количество воды, то после испарения концентрация и парциальное давление пара увеличатся. Однако такое будет наблюдаться только до тех пор, пока не наступит динамическое равновесие между паром и жидкостью, т.е. пока пар в смеси не станет насыщенным с давлением р Н.

С достаточной для практики точностью оба компонента влажного воздуха принимают за идеальный газ. Как для любой газовой смеси, в этом случае давление смеси определяется суммой парциальных давлений: р СМ = р СВ + р П.

Обычно приходится иметь дело с атмосферным влажным воздухом, тогда р СМ равно барометрическому давлению В, т.е. р СВ + + р П = В.

Массу пара, содержащегося в 1 м 3 влажного воздуха, называют абсолютной влажностью. Абсолютная влажность равна плотности пара, находящегося во влажном воздухе. Максимальная абсолютная влажность насыщенного влажного воздуха r" = 1/v".

Относительной влажностью называют отношение абсолютной влажности к максимально возможной при тех же условиях: j = r П /r".

Применив уравнение состояния идеального газа для парового компонента, можно записать

Часто полученное соотношение принимают за определение j. Обычно величину j выражают не в долях, а в процентах. Относительная влажность насыщенного воздуха равна 100 %. Величину j измеряют с помощью психрометров или гигрометров.

Простейший психрометр состоит из двух спиртовых термометров, один – обычный сухой термометр, а второй имеет устройство увлажнения. Термодатчик влажного термометра обернут хлопчатобумажной тканью, которая находится в сосуде с водой. Скорость испарения влаги увеличивается по мере уменьшения относительной влажности воздуха. Испарение влаги вызывает охлаждение объекта, с которого влага испаряется. По мере охлаждения термодатчика влажного термометра уменьшается и скорость испарения влаги до тех пор, пока при некоторой температуре будет достигнуто динамическое равновесие – количество испарившейся влаги сравняется с количеством конденсирующейся. Таким образом, температура влажного термометра даст информацию об относительной влажности воздуха. Термометры имеют точную градуировку с ценой деления 0,2–0,1 градуса. В конструкцию прибора для удобства пользования может включаться психометрическая таблица.

Массу влажного воздуха, находящегося в некотором объеме V, определяют суммой масс сухого воздуха и пара

m ВВ = m C В + m П.

После деления этой формулы на величину V получим

r ВВ = r C В + r П.

Используя уравнение состояния для сухого воздуха и приведенные выше соотношения, найдем

Подставим найденные величины в формулу для плотности влажного воздуха и после простых преобразований получим:

Отметим теперь, что R B < R П, значит (1/R B – 1/R П) > 0. Величина B/(R B ×T) равна плотности сухого воздуха при барометрическом давлении. Тогда из последней формулы следует вывод: плотность влажного воздуха меньше, чем плотность сухого воздуха при том же (обычно барометрическом) давлении. Правда, разница плотностей невелика, поэтому в технических расчетах обычно принимают r ВВ = r C В, хотя при необходимости более точные расчеты можно выполнять с использованием последнего выражения.

В практических расчетах широко используют параметр влажного воздуха, называемый влагосодержанием d. По определению, влагосодержание – это количество влаги или пара, кг(г), приходящееся на каждый килограмм сухого воздуха:

Для объема V величины m П = V × r П, m СВ = V × r СВ. Тогда

Отношение R СВ /R П =0,622, поэтому окончательно имеем

Важным параметром влажного воздуха является его энтальпия, которая складывается из энтальпии сухого воздуха и энтальпии пара, содержащихся в смеси:

H = H CB + H П = c Р СВ × t + d × (h" + r + c Р П × (t – t Н)).

Аналитические связи между t, j, d и Н достаточно сложные и часто неалгебраические. Поэтому решение многих задач затруднительно, требует итеративных методов. Чтобы упростить и облегчить расчеты, используют специальную диаграмму H–d, построенную для давления В = 745 мм рт. ст. на основании таблиц насыщения и приведенных выше формул. Эта диаграмма построена в косоугольной сетке координат:

На диаграмме нанесены сетка линий j = const, сетка изотерм t = const и линии Н = const, направленные под углом 45° к вертикали. Наличие этих сеток позволяет по любым двум заданным параметрам из перечня t, j, d и H найти точку на диаграмме, а значит, и другие два неизвестных параметра.

Во многих технических устройствах, например в пароструйных аппаратах, смесительных подогревателях пара и др., осуществляется адиабатное (без внешнего теплообмена) смешивание потоков водяного пара, в результате которого параметры пара исходных потоков претерпевают изменения.

Итак, пусть два (для простоты рассуждений) потока пара с массовыми расходами М 1 и М 2 и параметрами пара р 1 , v 1 , t 1 , h 1 , s 1 и р 2 , v 2 , t 2 , h 2 , s 2 смешиваются в камере и покидают ее с параметрами р СМ, v СМ, t СМ, h СМ, s СМ. Требуется определить параметры смеси.

Ясно, что массовый расход выходного потока составит М СМ = = М 1 + М 2 , а массовые доли g 1 , и g 2 пара соответствующих потоков

Поставленную задачу достаточно просто решить с помощью диаграммы h–s воды и пара. По заданным параметрам р 1 , t 1 и р 2 , t 2 на диаграмме найдем точки 1 и 2. Если процесс смешивания происходит обратимым способом, то удельная энтропия смеси s CM , как величина аддитивная, будет определяться суммой s CM = g 1 ×s 1 + g 2 ×s 2 , отражающей условие обратимости:

Параметры образующейся смеси найдем, соединив точки 1 и 2 и определив положение точки 3 по отношению отрезков l 13 и l 32 , длина которых определяется соотношением

Докажем, что такая пропорция удовлетворяет и условию обратимости, и уравнению теплового баланса h СМ = g 1 ×h 1 + g 2 ×h 2 .

Из подобия треугольников 1а3 и 3b2 следует простое соотношение

откуда получим

h 3 ×g 1 – h 1 ×g 1 = h 2 ×g 2 – h 3 ×g 2 .

h 3 ×(g 1 + g 2) = h 1 ×g 1 + h 2 ×g 2 .

Ho g 1 + g 2 = 1, значит,

h 3 = h СМ = h 1 ×g 1 + h 2 ×g 2 .

Аналогично, анализируя соотношения между отрезками l 1 a и l 3 b , можно убедиться, что соблюдается и условие обратимости.

В действительности же процесс смешивания – процесс необратимый и в соответствии со вторым законом термодинамики энтропия смеси больше энтропии обоих потоков до смешивания:

s CM = g 1 ×s 1 + g 2 ×s 2 + Ds НЕОБР.

Обычно давления пара на входах и выходе из камеры смешивания очень близки, и их можно считать одинаковыми, т.е. точки 1, 2 и 3 Н лежат на одной изобаре:

Если же в процессе такого смешивания происходит подвод или отвод теплоты, то и энтальпия, энтропия смеси будут дополнительно изменяться. Поскольку теплообмен здесь осуществляется при p=const, величина энтальпии изменится на количество теплоты, участвовавшей в теплообмене, Dh = q:

Приведенный метод позволяет определить параметры состояния смеси и при смешивании нескольких потоков пара. При этом сначала определяется состояние пара при смешивании двух потоков, потом аналогично при смешивании полученной смеси с третьим потоком и т.д.

Массовые доли каждого из компонентов любой смеси определятся по величинам массовых расходов М 1 и М 2 первого и второго потоков. Влагосодержание d и энтальпия h – параметры аддитивные, поэтому можно записать

d CM = g 1 ×d 1 + g 2 ×d 2 и h CM = g 1 ×h 1 + g 2 ×h 2 = g 1 ×h 1 + (1 – g 1)×h 2 ,

поскольку g 1 + g 2 = 1.

Величины d 1 , d 2 , h 1 , h 2 можно определить по диаграмме h–d по заданным значениям температур t 1 и t 2 и относительных влажностей j 1 , и j 2:

На диаграмме кроме точек 1, 2 и 3, отображающих параметры каждого из потоков и образующейся смеси, нанесены точки 4, 5 и 6, необходимые для дальнейших рассуждений.

Параметры смеси можно определить, не прибегая к расчетам. Для этого через точки 1 и 2 надо провести прямую и найти положение точки 3, использовав полученное ранее соотношение

Проведем простейшие преобразования, подставив значение h СМ:

Осталось доказать, что при таком делении отрезка 1–2 величина d CM также определится правильно. Для этого запишем отношения сторон выделенных треугольников к их высотам, учитывая, что эти высоты определяются разностями влагосодержаний d:

Отсюда найдем

g 2 ×d 2 – g 2 ×d СМ = g 1 ×d СМ – g 1 ×d 1 .

d СМ ×(g 1 + g 2) = g 1 ×d 1 + g 2 ×d 2 ; d СМ = g 1 ×d 1 + g 2 ×d 2 .

Последняя формула полностью соответствует свойству аддитивности.

Пусть смешиваются n химически невзаимодействующих между собой идеальных газов. Предполагается, что известны начальные термодинамические параметры состояния всех компонентов до смешения и условия смешения (условия взаимодействия с окружающей средой). Требуется найти равновесные параметры состояния газов после смешения.

Рассмотрим два случая смешения, для простоты полагая, что этот процесс идет без теплообмена с окружающей средой .

2.1. Смешение при W=Const

В этом случае условия смешения таковы, что объем образующейся смеси W см равен сумме начальных объемов компонентов смеси W H i:

(Не следует путать W H i с парциальными объемами W i , рассмотренными в параграфе 1.4.3.)

Обозначим:

Р H i – начальное давление i -го газа;

Т H i , t H i – начальная температура i -го газа соответственно в 0 К или 0 С .

Т.к. вся система из n газов при смешении в условиях W=Const не совершает внешней работы, то в соответствии с первым началом термодинамики для этого случая () можно записать:

Здесь: U см – внутренняя энергия смеси газов массой m см килограммов

с температурой Т 0 К ;

U H i - внутренняя энергия i -го газа массой m i килограммов

с начальной температурой Т H i .

Введем обозначения:

u см – удельная внутренняя энергия смеси газов при температуре Т 0 К ;

u H i – удельная внутренняя энергия i -го газа с начальной температурой Т H i .

Тогда уравнение (2.1.1) принимает следующий вид:

(2.1.2)

Как известно, для идеального газа du=C v dT , откуда при отсчете внутренней энергии от 0 0 К можно записать:

Здесь: - средняя в диапазоне 0 Т 0 К массовая изохорная теплоемкость смеси газов;

Средняя в диапазоне 0 Т H i 0 К массовая изохорная теплоемкость i -го газа.

После подстановки (2.1.3) в (2.1.2) получим:

Но в соответствии с параграфом 1.4.10 истинная массовая теплоемкость смеси газов выражается через массовые доли компонентов g i и их истинные теплоемкости следующим образом:

Аналогично средняя в диапазоне 0 Т 0 К массовая изохорная теплоемкость смеси газов определится как:

Подставляя это выражение в левую часть уравнения (2.1.4) получим:

откуда (2.1.5)

Т.к. из уравнения состояния , то после подстановки m i в уравнение (2.1.5) окончательно получим формулу для температуры смеси n газов:

Как известно, , поэтому формула (2.1.6) может быть записана в следующем виде:



(Следует напомнить, что произведение - это средняя в диапазоне 0- Т H i 0 К молярная изохорная теплоемкость i -го газа.)

В справочной литературе эмпирические зависимости теплоемкости от температуры часто даются для диапазона 0 t 0 С .

После подстановки (2.1.8) и (2.1.9) в уравнение (2.1.2) получим:

Заменяя m i его значением , окончательно получим формулу для температуры смеси газов в градусах Цельсия :

Выражая R i через малекулярную массу , получим еще одну формулу:

В знаменателях формул (2.1.6), (2.1.7), (2.1.10) и (2.1.11) содержатся средние теплоемкости, у которых в качестве верхнего предела осреднения используется температура смеси (t или Т ), подлежащая определению. В силу этого, температура смеси по этим формулам определяется методом последовательных приближений .

2.1.1. Частные случаи смешения газов при W=Const

Рассмотрим несколько частных случаев формул (2.1.6), (2.1.7), (2.1.10) и (2.1.11).

1. Пусть смешиваются газы, у которых зависимостью показателя адиабаты К i от температуры можно пренебречь.

(В действительности К убывает с ростом температуры, т. к.

где с о р , а – эмперические положительные коэффициенты.

Для технических расчетов в диапазоне от 0 до 2000 0 С можно пользоваться следующими формулами:

а) для двухатомных газов К 1,40 - 0,50 10 -4 t ;

б) для продуктов сгорания К 1,35 - 0,55 10 -4 t .

Из этих формул видно, что влияние температуры на показатель адиабаты К становится заметным лишь при температурах, порядка сотен градусов по шкале Цельсия.)



Т. о., если допустить, что

то формула (2.1.6) примет следующий вид:

Формулу (2.1.12) можно использовать в качестве первого приближения для формул (2.1.6), (2.1.7), (2.1.10) и (2.1.11)

2. Пусть смешиваются газы, у которых мольные изохорные теплоемкости равны и зависимостью этих теплоемкостей от температуры можно пренебречь, т. е.:

Тогда уравнение (2.1.7) принимает очень простой вид:

Если у газов равны между собой мольные изохорные теплоемкости, то в соответствии с уравнением Майера

должны быть равны между собой и мольные изобарные теплоемкости, а, следовательно, равны и показатели адиабаты, т. е.

При этом условии уравнение (2.1.12) превращается в (2.1.13).

2.1.2. Давление после смешения газов при W=Const

Давление, устанавливающееся после смешения газов, можно определить либо по формулам параграфа 1.4.2, либо из условия:

Р см W см = m см R см Т = m см Т .

Возникает естественный вопрос: какими уравнениями описываются смеси идеальных газов? Ведь с чистыми газами нам редко приходится встречаться в природе. Например, наша естественная среда обитания - воздух - состоит из азота N 2 (78,08 % ), кислорода O 2 (20,95 % ), инертных газов (0,94 % ), углекислого газа СO 2 (0,03 % ).

Пусть в некотором объеме V при некоторой температуре Т содержится смесь газов (которые мы будем нумеровать
индексом i ). Роль каждого компонента смеси будем характеризовать массовой долей :

где m i - масса i -го компонента. Наша задача - написать уравнение, подобное уравнению Клапейрона - Менделеева, и разобраться с эффективным числом степеней свободы смеси, где могут содержаться и одноатомные, и многоатомные молекулы.

Прежде всего, заметим, что мы рассматриваем идеальные газы. Молекулы не взаимодействуют друг с другом, и потому каждый компонент не мешает любому другому «жить» в том же общем сосуде. Различные газы в сосуде, в силу их предполагаемой идеальности, просто «не замечают» друг друга. Поэтому для каждого из компонентов справедливо одно и то же уравнение Клапейрона - Менделеева:

где n i - число молей вещества в i -м компоненте. Полное число n молей в смеси равно сумме числа молей n i в каждом из компонентов:

Аналогично, полная масса смеси равна сумме масс каждого из компонентов

и естественно определить молярную массу смеси m как массу одного моля смеси :

Введем величину, называемую парциальным давлением .

Имеет место закон Дальтона для газовой смеси:

Полное давление газовой смеси равно сумме всех парциальных давлений

Суммируя левые и правые части (1.21), приходим к стандартной форме уравнения Клапейрона - Менделеева

где m, μ, n определяются из условия конкретной задачи. Например, если заданы массовые доли компонентов, то молярную массу смеси находим из соотношения

Внутренняя энергия U i i -го компонента смеси определяется в соответствии с формулами (1.16) и (1.19):

С одной стороны, полная внутренняя энергия смеси равна сумме энергий каждого компонента:

Пусть в отдельных термостатированных сосудах под одинаковым давлением p находятся газы А и В , взятые в количествах имолей. При соединении этих сосудов произойдет самопроизвольное смешение газов вплоть до установления однородного состава газовой смеси по всему объему системы. Будем предполагать, что исходные газы и их смеси подчиняются уравнениям состояния идеальных газов. Тогда при сохранении постоянного общего давления газов p парциальные давления газов в образовавшейся смеси будут равны

При смешении идеальных газов тепловые эффекты отсутствуют, поэтому теплообмена между газами и термостатом не происходит, и изменение энтропии системы будет полностью определяться необратимостью процессов внутри системы.

Чтобы найти искомое изменение энтропии, необходимо противопоставить описанному самопроизвольному процессу мысленный равновесный переход между теми же начальным и конечным состояниями системы.

Для равновесного смешения газов воспользуемся специальным гипотетическим устройством, по аналогии с термостатомназываемым хемостатом. Это устройство состоит из термостатируемого цилиндра, снабженного перемещающимся без трения поршнем; в основании цилиндра находится избирательно проницаемая только для данного индивидуального химического вещества мембрана; последняя отделяет индивидуальное вещество, загруженное в хемостат, от изучаемой смеси веществ, находящейся в другом сосуде. В отличие от термостата, предназначенного для поддержания заданной температуры погруженного в него тела, либо для нагревания или охлаждения последнего в равновесном режиме, с помощью хемостата обеспечивают поддержание определенного значения химического потенциала данного индивидуального вещества в исследуемой смеси веществ, а также равновесный подвод и отвод вещества из смеси. Химический потенциал i -гохимического компонента в хемостате однозначно определяется температурой T и давлением, создаваемым на поршне. Изменяя давление на поршне, можно изменять направление перехода данного компонента через селективную мембрану: если – химический потенциал компонента в исследуемой смеси, то при вещество будет подводиться в смесь, при – выводиться из смеси, и при между хемостатом и смесью поддерживается химическое равновесие. Квазиравновесному изменению состава смеси соответствует диффузионный перенос вещества через мембрану под действием весьма малой разности значений химического потенциала по обе стороны мембраны.

Химический потенциал идеального газа, независимо от того, находится ли этот газ в индивидуальном состоянии или же в смеси с другими идеальными газами, выражается простым соотношением , где p i есть либо давление чистого газа, либо его парциальное давление в смеси. Поэтому при переносе идеального газа через полупроницаемую мембрану равновесие между смесью и хемостатом характеризуется равенством давления в хемостате и парциального давления газа в смеси.

Рис. 2.3. Равновесное смешение двух газов с помощью хемостатов: a – начальное состояние системы; б – состояние системы после изотермического расширения газов; в – конечное состояние после смешения газов через мембраны; 1 – хемостаты индивидуальных газов A и B ; 2 – полупроницаемые мембраны; 3 – сосуд для равновесного смешения газов.

Равновесное смешение идеальных газов A и B проведем в термостатируемой системе, состоящей из двух хемостатов индивидуальных компонентов A и B , соединенных с третьим сосудом – сборником образующейся смеси, снабженным, так же как и хемостаты, подвижным поршнем (рис. 2.3).

Пусть в начальный момент в хемостатах содержится соответственно молей компонента A и молей компонента B под одинаковым давлением p ; поршень в сборнике смеси находится в нулевой позиции (объем газа под поршнем равен нулю). Процесс смешения проводим в два этапа. На первом этапе совершаем обратимое изотермическое расширение газов A и B ; при этом давление A снижаем от p до заданного давления и давление B соответственно от p до . Объемы, занимаемые газами в первом и во втором хемостатах, изменятся соответственно от до и от до . Работа, совершенная расширяющимся газом в первом хемостате, равна ; во втором . Таким образом, на первом этапе в нашем гипотетическом устройстве производится суммарная работа . Так как при изотермическом расширении идеального газа его внутренняя энергия не изменяется, указанная работа осуществляется за счет эквивалентного подвода теплоты из термостата . Отсюда обратимое изменение энтропии в системе будет равно

На втором этапе процесса (собственно смешении) производим перепускание газов из хемостатов через селективные мембраны в сборник смеси путем синхронизированного движения трех поршней. При этом на каждом из поршней поддерживается постоянное давление, соответственно, и в хемостатах и в сборнике, что обеспечивает равновесный переход газов через мембраны (точнее говоря, в сборнике создается давление, чуть меньшее p , сохраняя отличную от нуля движущую силу диффузии через мембраны). Обратимость процесса смешения в данном случае обеспечивается возможностью синхронного изменения направления движения всех трех поршней, что приводило бы к обратному разделению смеси на индивидуальные компоненты. После завершения операции смесь, очевидно, займет в сборнике объем .

Так как в случае идеальных газов смешение не сопровождается каким-либо тепловым эффектом, теплообмен нашего устройства с термостатом на втором этапе операции отсутствует, . Следовательно, изменение энтропии системы на этом этапе не происходит, .

Полезно убедиться путем прямого подсчета, что работа газов на втором этапе равна нулю. Действительно, на перемещение поршней в хемостатах расходуется работа , в то же время в сборнике газами производится та же самая по величине работа . Отсюда .

Итак, суммарный прирост энтропии при смешении газов определяется выражением (2.9), . Если при равновесном варианте смешения этот прирост связан с обратным подводом теплоты и производством эквивалентного количества работы , то при прямом (необратимом) смешении газов этот же прирост энтропии происходит за счет ее генерации внутри системы; никакой работы система при этом не совершает.

После подстановки (2.8) выражение (2.9) можно переписать в виде

. (2.10)

Этому соотношению отводится обязательное место в курсах термодинамики ввиду его кажущейся парадоксальности. Примечательно, что для изменения энтропии (при смешении идеальных газов!) не имеет значения, что с чем смешивается, а также при каких давлении и температуре. По существу здесь приведен неформальный вывод (2.10).

Дополним вывод (2.10) его полезными следствиями. Вводя молярные доли компонентов и , получим выражение для изменения энтропии в расчете на 1 моль образующейся смеси:

. (2.11)

Максимум этой функции приходится на эквимолярную смесь газов, 0.5.

С точки зрения теории разделения смесей веществ представляет интерес проследить изменение производства энтропии при добавлении достаточно большого числа молей компонента B к одному молю компонента A . Полагая в (2.10) и , получим

При выводе (2.12) использовалось математическое представление логарифмической функции

.

Формула (2.12) показывает, что последовательное разведение смеси сопровождается бесконечным ростом энтропии в расчете на моль примесного компонента.

Формула (2.10) дает интегральную величину приращения энтропии при смешении конечных количеств газа. Для того, чтобы придти к компактному дифференциальному выражению, аналогичному формуле (2.7) для теплообмена, видоизменим модель смешения компонентов (см. рис. 2.4). Будем предполагать, что смешение происходит через проницаемую для обоих компонентов мембрану, либо через достаточно узкий вентиль, разделяющие сосуды, заполненные смесями A и B разного состава. Система термостатирована, и в обоих сосудах при помощи поршней поддерживается постоянное давление p . При ограниченной скорости смешения состав смеси в каждом из сосудов может считаться однородным по объему сосуда. Таким образом, данная система аналогична теплообменной системе со слабопроводящей перегородкой.

Вообразим себе три горизонтальных слоя А, В и С нашего газового столба, причем слой В расположен выше А, а А - выше С. Всегда возмжно получить любое количество смеси состава А, смешав некоторый объем из слоя С с объемом из слоя В. Обратно, любое количество смеси состава А можно разложить на две смеси с составом В и С.

Это смешивание и разделение двух газов можно осуществить и обратимым путем, укрепив в А, В и С горизонтальные трубы. Тот конец каждой такой трубы, который выходит из газового столба наружу, закрывается поршнем. Будем теперь в слоях В и С вдвигать поршни внутрь, двигая их, скажем, слева направо, а в точке А, наоборот, будем выдвигать поршень наружу, т. е. справа налево. Тогда в В и С некоторые массы газа уйдут из столба, а в А, наоборот, поступит какой-то объем смеси. Мы примем, что в каждой такой трубе содержится некоторая масса смеси того же самого состава, что и горизонтальный слой газового столба, с которым сообщатся данная труба.

Значения определятся тогда из уравнений

Отсюда следует, что

Разделим теперь смесь каким-либо обратимым путем и подсчитаем затраченную работу.

Введем в А единицу объема смеси, а из В и выведем, соответственно, объемы

Вся работа, затраченная при этом процессе, равна

подставляя сюда значения видим, что эта работа равна нулю.

Здесь имеется некоторая тонкость: смеси В и на которые распалась смесь А, подняты на различную высоту и приобрели, таким образом, различную потенциальную энергию. Но раз работа равна нулю и температура системы постоянна, то это возможно лишь в том случае, если система отдала или получила некоторое количество теплоты. Зная изменение потенциальной энергии, найдем количество теплоты, сообщенное системе, а отсюда и изменение энтропии.

Приращение потенциальной энергии составит

но оно равно количеству теплоты, сообщенному системе, так что приращение энтропии будет равно

На такую величину сумма энтропий объема смеси В и объема смеси С больше энтропии единицы объема смеси А. Отсюда можно найти объемы смесей В и С, сумма энтропий которых равна энтропии единицы объема смеси А; для этого доведем объемы смесей В и С обратимым изотермическим путем до объемов и сумму приращений энтропий обеих смесей при этом процессе приравняем выражению (75), взятому с обратным знаком.

Приращение энтропии для смеси В составит

Подставим в уравнение (76) выражение для давлений через плотности

Понравилось? Лайкни нас на Facebook