Новый комментарий. Дизельное топливо своими руками

Основным недостатком дизтоплива принято считать его склонность к загустению при малейшем понижении температуры. От кристаллизации парафиновых соединений и дальнейшего застывания не застраховано даже горючее стандарта Евро 5, хотя и не в таких масштабах, как другие сорта. Избежать подобных неприятностей поможет комплексная подготовка питательной магистрали, которая в суровых условиях должна подогреваться.

Причины установки своими руками подогревателя зимнего дизельного топлива: почему и зачем?

Опытные автолюбители не только знают, как приготовить аккумулятор к зиме, чтобы потом не пришлось , но и могут определить другие проблемы с запуском. Одной из них является непосредственно дизтопливо, которое представляет собой сложную смесь углеводородов:
  1. Парафиновых 10-40%.
  2. Нафтеновых 20-60%.
  3. Ароматических 15-30%.

Каждый, кто решил сделать проточный подогреватель дизельного топлива своими руками, знают о том, что летние сорта тяжелого горючего начинают терять свои качества уже при температуре около -5°C, а зимние – при 25°C. Бывалые автомобилисты прекрасно понимают непреодолимые сложности в определении между ними различий без лабораторных анализов.

Зимние метаморфозы

Какие же процессы происходят с соляркой в зимних условиях? По мере снижения температурных значений вязкость дизтоплива увеличивается. Эксперты выделяют три порога трансформации текучести эмульсии:

  • Помутнение – начало кристаллизации парафинов, присутствующих в солярке. Для летних сортов температура помутнения составляет -5°C, а для зимних – около -25°C.
  • Предельная фильтруемость – в этом состоянии мелкие кристаллы парафина способны забить поры фильтровальных сеток и элементов, а также осесть в каналах топливной магистрали и парализовать работу ДВС. Если не установить , то летнее горючее вступает в эту стадию при -7°C, а зимнее – при -35°C.
  • Застывание – абсолютная потеря текучести. На этом этапе летняя солярка превращается в желе при -10°C, а зимняя – при — 40°C.

Главное отличие марок дизтоплива заключается в процентном содержании парафинов, влияющих на текучесть эмульсии, значит, и на использование ее в зависимости от погодных условий и температурного режима.
Самым неприятным периодом для владельцев авто с дизельной установкой является осенне-зимнее межсезонье. В это время атмосферная температура колеблется в промежутке от +3°C до -5°C и солярка в любой момент может загустеть. А когда в дизтопливе еще и оказалась вода, то энергетический коллапс для автомобиля гарантирован.

Методы обеспечения запуска и работы дизеля при низких температурах

Способов запустить мотор в холодную пору не так уж и много и не все они могут быть эффективно использованы. Допустим, завести дизель при помощи буксира – довольно рискованное мероприятие. Привод ГРМ у легковых машин ременного типа и из-за рывков во время буксировки может запросто перескочить через несколько зубьев или вовсе порваться.
Есть еще один современный метод – применение специальных добавок в горючее , так называемых, депрессаторов. Однако следует учитывать такие моменты, как возрастание стоимости заправки и сомнительное качество некоторых продуктов этого ряда.

А вот, по рассуждениям практиков, проточный подогреватель штатного дизельного топлива своими руками имеет право на использование по причине низких материальных затрат и эффективности.
Электрические и комбинированные системы в борьбе с кристаллизацией парафиновых соединений доказали свою продуктивность при любых погодных условиях. Такие обогреватели устанавливаются на критических узлах топливной системы и быстро обеспечивают рабочее состояние дизтоплива.

Варианты решений своими руками проточного подогревателя для штатного дизельного топлива

Методы реализации надежного топливоснабжения мотора при помощи обогрева известны давно. Основные узлы подачи горючего, которые нуждаются в поддержании температурного режима:

  • Фильтр грубой очистки или сепаратор.
  • Фильтр тонкой очистки.
  • Магистраль трубопроводов.
  • Топливозаборник.

В автомагазинах можно найти широкий спектр уже модернизированных компонентов или дополнительных элементов к штатным агрегатам. Единственным препятствием к их приобретению может стать стоимость, которая довольно высока. Опытные автолюбители утверждают, что некоторые работы по организации подогрева горючего проводятся ими самостоятельно. При этом ресурс работы таких приспособлений нисколько не уступает заводским образцам, а в некоторых случаях даже способны превзойти их по части эффективности.
По функциональному назначению различают следующие типы нагревательных элементов:

  • бандажный – для фильтров тонкой очистки;
  • проточный – устанавливается перед фильтром в разрез топливопровода;
  • гибкий ленточный – осуществляет нагрев фильтров и магистрали;
  • стержневой – возможно изготовление своими руками подобного подогревателя дизельного топлива для последующей установки в сепаратор или топливозаборник;
  • подогреваемые насадки — используется для нагрева сепараторов и топливозабюорников.

Также возможна самостоятельная замена в топливной емкости штатных узлов забора горючего на подогреваемые изделия. Это, конечно, обойдется дороже, чем самодельные девайсы, но подразумевает экономию как минимум 1500-2000 рублей за работу.

Как сделать своими руками подогрев дизельного топлива в автомобильном баке?

Механизм, обеспечивающий надежность поступления горючей жидкости из штатной емкости автомобиля, обязательно должен быть обогреваемым. Нужно понять, что в сильные морозы солярка начинает терять текучесть уже на входе топливозаборника. Поэтому перед запуском двигателя нужно предварительно отогреть топливный состав и обеспечить его рабочее состояние в маршевом режиме.

Винтажный метод погружения лампочки

В прошлые времена, когда о нынешнем изобилии автомобильных аксессуаров можно было только мечтать, владельцы дизелей создавали положительное температурное поле в емкости для горючего при помощи обычной лампочки на 12 В мощностью 50-55 Вт . Для этого, кроме источника света, использовали:

  • Элетропровода сечением 2,5мм².
  • Выключатель.
  • Предохранитель.

Лампа погружается через горловину резервуара непосредственно в топливо. Обязательно нужно расположить ее рядом с устройством топливозабора. Только таким образом удастся эффективно растворить кристаллизованный парафин и обеспечить стабильность поступления горючего в магистраль.
Чтобы самодельный подогрев дизельного топлива своими руками в бак не причинил вреда, в цепь управления обязательно включали предохранитель. Сегодня такой способ выглядит архаичным, но кто знает, в какой ситуации мы можем неожиданно оказаться в дальней дороге? Возможно, именно так получится выйти из нештатной ситуации, когда под рукой ничего подходящего не окажется.

Проволочный обогрев

Вариант более надежен и эффективен, чем вышеописанный. По принципу работы его можно сравнить с функционированием нагревателя, который встраивают для . Схема реализации проста и доступна любому автолюбителю:

  • Сделать отверстия в корпусе сеточки заборника, количеством до 8-10 штук с одной стороны; они должны быть расположены друг против друга с определенным смещением шага.
  • Приготовить специальный провод, изготовленный на основе материала с высоким удельным сопротивлением, например, из нихрома.
  • Оформить нагревательную структуру, продев провод через отверстия.
  • Просверлить в крышке заборника два отверстия для установки клемм и подключить провод к ним.
  • Подключить нагревательный элемент к бортовой сети автомобиля.

В электрическую цепь нужно обязательно включить плавкий предохранитель, а также реле для автоматизации процесса нагрева.

Не в качестве рекламы: магазинная альтернатива от Номакон

Группа компаний Номакон предлагает автолюбителям специальные насадки для топливозаборников серии НТП-100 . Прибор способен функционировать как в предпусковом, так и в маршевом режиме. Комплект включает:

  • Фильтр грубой очистки.
  • Виброустойчивый и пожаробезопасный нагреватель.
  • Устройство для крепления на торце топливозаборной трубки.
  • Электромонтажный набор.


Этот тип подогревателя дизельного топлива в резервуаре может быть установлен своими руками без помощи специалистов. Подключение к электросети зависит от вида управления устройством.

  • При ручном – непосредственно к бортовой сети авто через выключатель.
  • При автоматическом – к блоку СПА-101.

Щелевой фильтр и горючее в трубке забора разогревается перед запуском за 3-4 минуты. Этого хватает, чтобы наступила депарафинизация и текучесть солярки пришла в норму.

Как сделать своими руками подогрев штатного топливного фильтра дизеля грубой очистки?

Проверенным методом корректировки температурного режима является модернизация узла предварительной очистки горючего. Среди всех вариантов нужно выделить два:

  1. Монтаж свечи накаливания на штатное место сливного клапана.
  2. Установка нагревательного устройства в корпус штуцера топливоподачи.

Важно! Первый способ тюнинга требует продуманных действий. Узел, который подлежит демонтажу, предназначен для удаления отстоя воды из дизтоплива. Вывод – подобная модернизация подходит владельцам, которые заправляют свое авто качественным составом.

Модернизация сливного клапана сепаратора


Сразу стоит отметить необходимость наличия токарного станка или услуг квалифицированного токаря. Подготовка и установка свечи накаливания на место сливного клапана происходит по следующей схеме:

  • из металла вытачивается втулка, которая по конфигурации совпадает с пластиковым колпачком слива;
  • на новой втулке нарезается резьба с соответствующим шагом;
  • просверливается отверстие на цилиндрической образующей и нарезается внутренняя резьба для фиксации шпильки при помощи метчика;
  • в полости детали нарезается внутренняя резьба;
  • ввинчивается свеча накаливания;
  • установить сборочную единицу в корпус сепаратора и подключить провода: «+» к элементу нагрева, а «-» к шпильке.

Модернизация штуцера подачи топлива сепаратора


Еще один , он более распространен и, к тому же реконструкция не предусматривает изъятие важных элементов конструкции. Схема тюнинга аналогична вышеописанной и включает следующие этапы:

  • просверлить отверстие в корпусе штуцера;
  • нарезать в полости резьбу, соответствующую шагу резьбы свечи накаливания;
  • вкрутить свечу в новое отверстие;
  • подключить питание устройства от бортовой сети.

В данном варианте нагревательный элемент расположен в верхней части , как и у большинства заводских экземпляров. Эффективность работы такой конструкции превышает КПД первого способа. Электрическая часть, как обычно, состоит из выключателя и плавкого предохранителя.

Усовершенствование фильтровальных элементов тонкой очистки

Довольно часто на окончательном этапе очистки горючего фильтровальный элемент забивается кристаллизованным парафином. В результате прекращается подача дизтоплива в рабочую полость насоса высокого давления и возрастает вероятность его поломки. Чтобы этого не произошло, рассмотрим два варианта организации обогрева фильтра тонкой очистки , которые вполне можно реализовать самостоятельно.

Вариант 1

Для работы понадобятся следующие детали и оборудование:

  • около 6-10 метров нихромовой или медной проволоки сечением 0,5-1 мм;
  • кнопка управления;
  • стеклоткань и термоустойчивый герметик;
  • предохранитель 10-15 А и реле;
  • два сантехнических хомута;
  • олово, канифоль и паяльник.


В процедуру организации своими руками данного вида проточного подогревателя дизельного топлива входят пункты:

  • нанести на стеклоткань герметик и приклеить ее к корпусу элемента (сушить около 24 часов);
  • намотать проволоку мелким шагом на корпус детали и зафиксировать концы хомутами;
  • наложить стеклоткань с герметиком поверх витков проволоки и дать просохнуть;
  • припаять на хомуты контакты для подсоединения проводки и собрать электрическую схему.

Вариант 2

Способ относится к обогревам бандажного типа. Для его реализации подойдут:

  • электрический обогрев зеркал;
  • греющая пленка (по типу теплых полов);
  • гибкий подогреватель.


Рабочий процесс прост и заключается в следующих пунктах:

  • обмотать нагревательный элемент вокруг фильтра и зафиксировать его изоляцией;
  • подсоединить провода;
  • уложить сверху нагревателя фольгированную теплоизоляцию толщиной 0,5 см;
  • поверх готовой конструкции уложить плотную бумагу или стеклоткань и зафиксировать хомутами.

Подогреваем горючее от системы охлаждения двигателя

Подогретый в баке или сепараторе состав легко может потерять текучесть, проходя по всей магистрали, да еще и на высокой скорости движения автомобиля. В этом случае автолюбитель может выбрать и сделать своими руками любую компоновку подогревателя дизельного топлива с применением простых технологий:

  • элементарное утепление топливной магистрали строительными материалами;
  • монтаж электрического гибкого подогревателя путем наматывания или прикладывания на поверхность узла;
  • установка теплообменника перед фильтровальным элементом тонкой очистки.


Последний метод заключается в изготовлении детали, которая имеет два независимых контура. Простейший экземпляр такого устройства состоит из двух трубок разного диаметра. Более тонкая трубка при помощи сварки центруется внутри большой.
Наружный контур представляет собой патрубки для пропуска дизтоплива. Малый круг системы охлаждения подключается к внутреннему блоку. Возможны вариации этой конструкции, где контуры, предназначенные для солярки и горячего антифриза, могут поменяться местами. Более сложные экземпляры содержат внутренний блок, выполненный по типу спирали.
Высокую надежность пуска дизеля в зимних условиях можно обеспечить только при комплексной модернизации. Ее суть состоит в применении нескольких вышеописанных методов, которые осуществляют обогрев узлов топливной системы.

Как и из чего «сделать» дизельное топливо

Рост цен на топливо будит в голове фантазии на тему, как было бы хорошо избавиться от «заправочной зависимости». Как вам, например, такой фантастический проект: заехал в болото, побуксовал и между делом собрал выделившийся метан в специальный баллон? Все, теперь можно обратно на асфальт – до следующего болота топлива хватит. Так бы и катался от топи до топи, подпитывая свой автомобиль газообразными продуктами гниения. Увы, все это лишь мечты. В свете вышесказанного возникает только один вопрос: любите ли вы японскую кухню?..

Так вот, судя по всему, фотограф Щуси Ямада к кухне своей родной страны Японии относится очень положительно. Да что там, не исключено, что он любит ее даже больше, чем болотный оффроуд. И именно поэтому, отправившись в автономное кругосветное путешествие на своей дизельной Toyota Land Cruiser 100, он прокладывал курс не между красивейшими болотами земного шара, а от одного японского ресторана к другому. И что в этом удивительного, спросите вы. А то, что в ресторанах Ямада-сан заправляет не только свой организм, но и… автомобиль! Да, при желании он, наверное, мог бы написать книгу о том, как в разных частях света представляют себе кулинарные традиции Страны восходящего солнца, но цель его путешествия несколько иная – Щуси Ямада тестирует в реальных условиях сконструированный им же автономный аппарат по выработке биодизельного топлива.

Все верно: японскому фотографу удалось собственноручно сконструировать и собрать работоспособную установку, производящую вполне пригодную для использования «солярку» из отработанного фритюрного масла. И что самое главное – все это хитрое устройство помещается в багажнике машины и не требует для своей работы ничего, кроме получаемого даром масла и некоторых недорогих химических компонентов, о которых чуть позже. В общем, в каком-то смысле практически вечный двигатель!.. При этом закон сохранения энергии остается нерушим: масло-то поступает в систему из ресторанных кухонь (то есть со стороны). Тем более что там (на кухнях) оно уже выполнило свою историческую миссию и в любом случае подлежит утилизации. Вот, стало быть, Ямада его и утилизирует…

Зря улыбаетесь – так, передвигаясь от ресторана к ресторану, японский путешественник уже почти полностью обогнул наш земной шарик, проделав почти тридцать тысяч километров (и это без учета морских переправ). Океаны логично разделили огромный путь на несколько этапов, каждый из которых Щуси проделывал с новой командой, в состав которой входят «старший помощник» и переводчик. Впрочем, благодаря языковым границам переводчики менялись даже чаще (на отрезке маршрута по странам СНГ капитана сопровождают японский фотограф Юсуке и преподавательница японского языка из Киргизии Назира).

Путь самурая

А начиналось все вот так: создав год назад работоспособную установку, Щуси Ямада первым делом «обкатал» ее в ближних поездках по окрестностям Токио. И лишь убедившись, что все работает как положено, изобретатель решился на «кругосветку». А поскольку он принял твердое решение, что будет заправлять свой автомобиль только на кухнях, то никакого жесткого графика заранее не намечалось – все зависело от того, сколько масла будет предоставлено путешественнику и где его будет проще собирать. Ну а на случай, если в каком-то месте достаточного количества фритюрной «отработки» вдруг сразу не окажется, Щуси придумал истинно японский выход: сидеть на месте и терпеливо ждать, пока оно наберется... При этом путешественник не просто собирался проехать «масляный круг почета вокруг планеты». В его планы входили встречи с журналистами и участие в тематических выставках (конечно, если таковые будут совпадать с графиком).

Первый этап этого «великого масляного путешествия» состоялся в декабре прошлого года. Он получился совсем коротким: от Токио до Нагои, где автомобиль погрузили в контейнер и отправили морем в Канаду. Дальнейший путь продолжился в феврале из Ванкувера. Стояла зима, и погода преподнесла первые неприятные сюрпризы: уже при легком минусе растительное масло начинало густеть, а на сильном морозе и вовсе застывало. Как следствие заправлять «маслоперегонный аппарат» приходилось в тепле, а при сборе масла впрок требовалось сразу же добавлять специальные присадки (в противном случае его невозможно было перелить из канистр в бак без предварительного разогрева).

В общем, на диком севере путешественники долго не задержались и вскоре очутились в ЛосАнджелесе. Ранней весной этот город был прекрасен и располагал к тому, чтобы побыть здесь подольше. Тем более что стало уже по-настоящему тепло, а множество ресторанов были готовы предоставить буквально неисчерпаемые запасы фритюрной «отработки». Но путешествие на то и путешествие, чтобы двигаться вперед. А потому перламутрово-зеленый Land Cruiser отправился наматывать североамериканские мили с запада на восток по южным штатам, а затем по восточному побережью. В конце апреля он добрался до Вашингтона. Собственно, в американской столице путь по Новому Свету и завершился – Toyota поплыла через Атлантику, чтобы в июне из Лиссабона стартовать на следующий этап.

Однако задержка в этом городе вышла несколько продолжительнее, чем предполагалась. Как ни странно, в португальской столице оказалось довольно трудно достать необходимое количество масла! Осложнял ситуацию и языковой барьер. А так как путешественники планировали сразу же отправиться через Средиземное море на юг, то по расчетам им требовалось не менее 400 л пищевой «отработки». В общем, сырье для топлива собирали по самым разным лиссабонским заведениям общепита больше недели. Зачем был нужен такой запас? Да просто потому, что в Африке этого продукта вообще не достать, а тем более бесплатно. Причина банальна – на Черном континенте жарят на одном и том же масле до тех пор, пока оно есть, а затем подливают новое и продолжают жарить дальше, считая «плановую замену» непозволительной причудой заевшихся белых. Даже в Марокко, наиболее европеизированной стране Северной Африки, пополнять запас топлива удавалось только в «Шератоне» и других отелях высшего класса.

Впрочем, эта проблема была не единственной, с которой столкнулись японские путешественники. Едва ли не большей неприятностью была изнуряющая жара Сахары. «Мы просто не привыкли к 50-градусной температуре, – рассказывает Щуси Ямада. – Впрочем, для переработки масла это был скорее плюс – требовалось меньше энергии на его нагрев». Но как бы то ни было, а в Африке японские путешественники решили не задерживаться и, сделав круг по Марокко, вернулись в Испанию продолжать европейское турне. Посетив по пути Италию и Францию, они переправились на Британские острова, поколесили там, вновь проехали по тоннелю под Ла-Маншем и затем через Германию, Чехию и Украину добрались до Москвы, где собственно мы с ними и встретились. В общей сложности с начала пробега «маслопотребляющая» Toyota накатала порядка двадцати тысяч километров.

Российская столица задержала путешественников на неделю с хвостиком. Здесь хоть и не Африка, но к маслу отечественный общепит традиционно относится бережно и зря ценный продукт на альтернативное топливо не переводит. Опытным путем Ямада выяснил, что крупный московский ресторан в неделю «производит» порядка пятидесяти литров отработанного масла. В общем, как и в Лиссабоне, собирать его пришлось с миру по нитке. Более того, зная, что в российской провинции с этим сырьем дело обстоит еще хуже, и когда случится полноценная заправка в следующий раз – никто точно предсказать не может, Щуси набрал в Москве порядка семисот литров и лишь после этого двинулся в дальнейший путь на восток. Добравшись до Уральских гор, путешественники забрали южнее, прокатились по степям Казахстана и затем вновь вернулись в Россию, после чего сделали еще одну длительную остановку в Новосибирске. Сейчас Щуси со своей командой направляется во Владивосток, чтобы оттуда доставить машину домой, в Японию.

Материальная часть

Автомобиль, на котором пустились в странствие японцы, ничем, кроме химической установки, расположенной в его багажнике, и измененного салона, не отличается от стандартной Toyota LC 100 с 4,2-литровой 24-клапанной рядной турбодизельной «шестеркой» 1HD-FTE под капотом. Причем сам двигатель никаким образом не переделывался. По словам Щуси, разницы в тяге или динамике автомобиля нет, и понять, что именно в данный момент сгорает в цилиндрах, можно только по запаху выхлопа (при работе на масле из выхлопной трубы тянет подгорелыми семечками). Расход топлива тоже остается стабильным – те же 12–14 л на «сотню», которые при неспешном равномерном движении по шоссе иногда удается снизить до десяти.

А теперь заглянем в салон автомобиля… Во втором ряду осталось только одно посадочное место – всю заднюю часть машины занимают химический реактор (в нем растительное масло превращается в полноценное дизельное топливо) и канистры с резервным сырьем, а также запасные расходные элементы. Тут же едет автономный дизель-генератор на тот случай, если на стоянке нет возможности запитать установку от стационарной сети. Важная особенность химической установки в том, что она может потреблять электричество и от городской электросети, и от дизель-генератора, и от бортовой сети автомобиля. Процесс может идти как во время стоянки, так и при движении машины и не требует особого внимания со стороны экипажа. Нагреватель потребляет до 2 кВт, остальные элементы системы – по 200–400 Вт. При этом установка остается энергетически и экономически выгодной даже при полностью автономном цикле без внешней электросети. Но бережливые японцы все-таки предпочитают питать свой реактор электричеством извне.

Химия и физика В принципе растительное масло (как и любой другой органический жир) могло бы быть полноценным горючим для дизельного двигателя и само по себе, если бы не высокая вязкость. А потому вся суть превращения этого продукта в моторное топливо сводится к одной простой вещи: понижению этой самой вязкости, что, однако, сделать не совсем просто.

Дело в том, что с точки зрения химии растительное масло – это смесь триглицеридов, то есть соединений сложных эфиров глицерина с одноосновными жирными кислотами. А поскольку именно глицерин придает маслу повышенную вязкость, то, стало быть, его надо каким-то образом оттуда удалить. Самый простой и дешевый способ, применяемый как в промышленном производстве биодизеля, так и в установке японского изобретателя – переэтерификация, то есть замещение глицерина спиртом. В данном случае спирт – метиловый. Он хотя и ядовит, но, во-первых, дешев, а во-вторых, с ним проще провести реакцию в походных условиях. При смешивании масла со спиртом и нагревании свыше 60 градусов (в присутствии щелочи как катализатора) образуется смесь метиловых эфиров, а глицерин выпадает в осадок. Именно эти метиловые эфиры и есть вожделенное биодизельное топливо.

Баки для исходных компонентов Щуси расположил в правой части своей установки: первый, на 100 литров, для отработанного фритюрного масла, а второй, на 20 литров, – для метанола (именно в пропорции 5:1 необходимо смешивать эти вещества для правильного прохождения реакции). Однако сразу преобразовать такие объемы не позволяет дефицит места в багажнике. Поэтому главный резервуар, в котором проходит химическая реакция, имеет объем всего 40 л, а все исходное сырье, включая и катализатор из отдельной емкости, поступает в него автоматически в правильном соотношении. После полуторачасового нагревания и шестичасового охлаждения смесь разделяется на биодизель и глицерин (последнего на выходе получается столько же, сколько метанола на входе).

После чего глицерин как более тяжелое вещество опускается вниз и затем просто сливается в отдельную емкость. В промышленном производстве глицерин обычно собирают, очищают, а затем используют в качестве сырья для химической и косметической промышленности. Однако в условиях дальнего путешествия это нерационально. Поэтому изобретатель утилизирует глицерин оригинальным и безопасным для природы способом: в отдельной емкости его перерабатывают специальные бактерии, дающие на выходе подобие гумуса, который можно уже просто высыпать на землю. Но на этом процесс получения биодизельного топлива не заканчивается. Полученную смесь метиловых эфиров требуется дополнительно очистить – в ней все еще присутствуют остатки глицерина, мыло (образуется попутно в процессе реакции из-за случайного, но неизбежного попадания в систему воды) и другие примеси. Основной промышленный способ разделения «мух и котлет» на сегодняшний день – многократная промывка большим количеством воды с последующей фильтрацией и осушением.

Однако поскольку эта технология совершенно неприемлема для портативной автомобильной установки, японскому изобретателю пришлось немало поработать, создавая систему сухой фильтрации. Результат его трудов занимает в багажнике Toyota все пространство слева от главного резервуара. Здесь полуфабрикат биотоплива попадает сначала в специальную центрифугу, а затем проходит через систему из четырех фильтров со специальным сорбентом, задерживающим все лишние остатки (комплекта картриджей для этого устройства хватает на 10 тыс. км). Только после этого метиловые эфиры можно считать достаточно чистыми для того, чтобы заливать их в бак автомобиля. Вы спросите, во сколько же обходится полученное таким образом дизельное топливо? По предварительным подсчетам Щуси, при бесплатном масле литр топлива обходится примерно в 50 американских центов. Но это без учета амортизации самой установки по производству биодизеля…

РАБОТА ЕЩЕ НЕ ЗАКОНЧЕНА

О биодизельном топливе впервые я узнал три года назад. В первый раз проехал на нем 500 км, никакой разницы в поведении машины по сравнению с соляркой не заметил и решил, что можно рискнуть на марафонскую дистанцию. Например, пересечь всю Японию с севера на юг, используя только биотопливо. Сказано – сделано. Правда, тогда я не вырабатывал горючее самостоятельно, а заправлялся на стационарных колонках. Зная, что в Европе биодизель очень популярен, я решил отправиться туда и два года назад совершил вояж по десяти странам Европы. Однако использовать один лишь растительный дизель в тот раз у меня не получилось. В Испании, например, биотопливных заправок практически не было, а во Франции под маркой «биодизель» продавалось топливо не чисто растительного происхождения, а в смеси с обычным дизельным. Тогда у меня впервые мелькнула мысль об автономной установке по производству биодизеля, ведь во многих местах, к примеру в России, Америке, Африке, его нет вообще. Поэтому для путешествия по всему миру на биотопливе необходим автономный компактный аппарат по его производству. Единственная сложность – промышленность такие установки не выпускает. Но раньше, чем я задумался о создании такой установки, одна из японских раллийных команд предложила мне место пилота на «Дакаре-2007». Я согласился, предложив в ответ использовать растительный дизель в качестве горючего для «боевой» машины. Тема биотоплива для спортивных моторов была диковинкой, но после некоторых раздумий они согласились. В результате одной из наших техничек на «Дакаре» была цистерна с биодизелем из Европы. Гонку я провел отлично, без единой проблемы с двигателем, и сумел подняться на «бронзовую ступень» пьедестала в дизельном зачете. После «Дакара» я принялся за автономную топливную установку, и через 10 месяцев этот аппарат был готов. Работа оказалась нелегкой. Мне не хватало специальных знаний, поэтому я общался со многими специалистами в области химического машиностроения по всему миру. Изучал теорию, строил тестовые образцы оборудования, проверял их. Проблема была в том, что практически все подобные современные устройства используют в процессе очистки топлива большое количество воды. В автомобиле просто нет для него места, поэтому мне пришлось самому разрабатывать систему сухой очистки (до меня подобными изысканиями занимались в мире всего несколько человек). Так получилась компактная установка, которая помещается в багажник. Но работа еще не закончена. Это экспериментальный прототип, который я продолжаю совершенствовать по ходу поездки.

Глобальная проблема

Понятно, что своим пробегом японец пытается привлечь внимание общественности к необходимости замены традиционного топлива произведенным из возобновляемых ресурсов. Слов нет, это правильная и, я бы даже сказал, благородная идея. Но есть несколько нюансов. Для начала прикиньте в уме, сколько отработанного масла потребуется для того, чтобы бесперебойно заправлять дизельные автомобили хотя бы одного города, и справятся ли с такой задачей все вместе взятые рестораны этого населенного пункта? Опыт биотопливного пробега показал, что даже если будет налажен централизованный сбор и переработка фритюрного масла, общепит сможет удовлетворить лишь мизерную часть потребности в «сырье». В общем, капля в море. Впрочем, это еще совсем не повод не заниматься переработкой кухонных отходов. Другое дело, что эту самую «каплю» придется чем-то дополнять.

И тут возникает еще больше вопросов. Дело в том, что биотопливные темы в мире поднимаются с середины 70-х (то есть со времен первого нефтяного кризиса). Уже тогда были обозначены два перспективных направления: использование этилового спирта вместо бензина и растительного масла вместо дизельного топлива. Впереди планеты всей тогда оказалась Бразилия, очень быстро наладившая производство топливного этанола из сахарного тростника и с завидной оперативностью переоснастившая свой автопарк для езды на спирте (как в этой стране обошли «традиционную российскую проблему», история умалчивает). Когда же нефть вновь подешевела, бразильские автомобили с легкостью перешли на двойное «питание», и теперь охотно потребляют смесь бензина и этанола.

В Европе биотопливом начали активно заниматься с 1992 года, и в отдельных странах (например, в Германии) к сегодняшнему дню эти разработки достигли заметных высот. Вообще же нужно сказать, что в Старом Свете приоритетным направлением было признано производство биодизеля из растительного масла. Более того, в 2007 году здесь было изготовлено (по данным Global Petroleum Club) 5713 миллионов литров биотоплива.

Но тут забили тревогу экологи. Казалось бы, им-то, наоборот, радоваться надо: в отличие от минерального топлива биологическое дает более чистый выхлоп и не загрязняет почву и воду при попадании в них (не говоря уже о сохранении невосполнимых ископаемых ресурсов). Но все оказалось сложнее. Наиболее энергетически выгодный биодизель получается из пальмового масла, которое дает масличная пальма, произрастающая главным образом в Юго-Восточной Азии (именно из такого масла производится львиная доля биодизельного топлива во всем мире). Разумеется, столь выгодную и перспективную культуру в последние годы стали выращивать все активнее, расширяя посадочные площади за счет окружающего леса. И тут обнаружился весьма неприятный побочный эффект. Экологическая угроза от вырубки дождевых тропических лесов, которые активно поглощают углекислый газ и тем самым снижают парниковый эффект на нашей планете, на деле оказалась гораздо страшнее, чем вред от выхлопных газов всех транспортных и промышленных дизелей, работающих на традиционном топливе... В общем, тупик.

Другие же масличные культуры, наиболее перспективной из которых в европейском климате считается рапс, гораздо менее выгодны как с энергетической, так и с экономической точки зрения. Судите сами: с гектара посадок масличной пальмы можно получить до 5950 л масла, а с гектара рапсового поля – до 1190 л. К слову, тот же подсолнечник дает всего 952 л. Как следствие для полного замещения минерального топлива рапсовым потребуется многократное увеличение пахотных площадей. Плюс повышение урожайности путем внесения большего количества химических удобрений, а также генной модификации растений. В общем, тоже путь с весьма туманной экологической перспективой. Не случайно же, по данным экспертов Международного социально-экологического союза, без вреда для природы из масличных растений в мире можно производить не более 20% требуемого дизельного топлива. При этом по их же подсчетам в России, где сельское хозяйство во многих регионах находится в запустении (в том числе и изза высоких цен на горючее), крестьяне без ущерба для природы и производства пищевых культур могли бы сами обеспечивать себя дешевым биотопливом. Что ж, уже хорошо.

А что в этой ситуации делать горожанам, да и вообще – что делать? Однозначного ответа на этот вопрос на сегодняшний день просто нет. Перейти всем миром по примеру Бразилии на этанол проблематично – дешевый сахарный тростник растет далеко не везде. Гнать технический спирт из более дорогого зерна чревато еще большим увеличением цен на зерно, в том числе и продовольственное. С точки зрения экспертовэкологов, лучшим решением этой проблемы стал бы гидролизный спирт из отходов деревообработки (попросту говоря, опилок) и другой бросовой биомассы, содержащей целлюлозу. Но тут, по крайней мере в нашей стране, хватает сложностей юридического плана: существующие на сегодняшний день акцизы уничтожают идею в зародыше.

А что касается дизельного топлива, то здесь наиболее перспективный источник сырья – маслосодержащие водоросли (правда, технология все еще находится в начальной стадии разработки). Также существует еще одна потенциально интересная инновация, предложенная в 2005 году немецким фермером и изобретателем Кристианом Кохом, применяя которую можно превратить в солярку практически любые органические и пластиковые отходы, попутно решая проблему утилизации бытового мусора. Впрочем, все это темы для отдельных материалов. Развитие науки не стоит на месте, а значит, у нас еще будет повод вернуться к этой важной для всех проблеме.

текст: Евгений КОНСТАНТИНОВ
фото: Евгений КОНСТАНТИНОВ
из архива Щуси ЯМАДЫ

Производство биодизеля в домашних условиях - Получение биодизеля своими руками

Общий технологический процесс получения биодизеля.


Для получения биодизеля используют любые виды растительных масел — подсолнечное, рапсовое, льняное и т.д. При этом биодизель полученный из разных масел имеет некоторые отличия. Так, например пальмовый биодизель имеет наибольшую калорийность, но и самую высокую температуру фильтруемости и застывания. Рапсовый биодизель несколько уступает пальмовому по калорийности, но лучше переносит холод, потому более всего подходит для дизельных двигателей эксплуатирующихся вевропейских стран и России.

Сам процесс получения биотоплива , в принципе, достаточно прост. Нужно уменьшить вязкость растительного масла, чего можно достичь различными способами. Любое растительное масло — это смесь триглицеридов, т. е. эфиров, соединенных с молекулой глицерина с- трехатомным спиртом (C3H8O3 ). Именно глицерин придает вязкость и плотность растительному маслу. Задача при приготовлении биодизеля- удалить глицерин, заместив его на спирт. Этот процесс называется трансэтерификацией.

Реакция в целом выглядит так,

CH2OC=OR1
CHOC=OR2 + 3 CH3OH → (CH2OH )2CH-OH + CH3COO-R1 + CH3COO-R2 + CH3OC=O-R3
CH2COOR3

Триглицериды+метанол→ глицерол+эфиры,

Где R1, R2, R3: алкильные группы.

В результате применения метанола образуется метиловый эфир, в результате использования этанола- этиловый эфир.

Из одной тонны растительного масла и 111 кг спирта (в присутствии 12 кг катализатора) получается приблизительно 970 кг (1100 л) биодизеля и 153 кг первичного глицерина.
Для начинающих лучше использовать метанол, с этанолом процесс идет чуть сложнее. Необходимо помнить о всех правилах работы с метанолом.
В качестве щелочи берется гидроксид калия КОН или гироксид натрия — NaOH. Для начинающих рекомендуется использовать именно NaOH, он очень гигроскопичен, его необходимо хранить плотно закрытым и при покупке, потряхивая банку, убедиться, что он не набрал влагу.

Правила работы со щелочами.

Необходимо также соблюдать правила безопасности при работе с гидроксидами (щелочами), избегать попадания в глаза, беречь от открытых источников огня, использовать при работе перчатки и защитные средства. Щелочь очень активно может реагировать с алюминием, оловом и цинком — для хранения щелочи нужно использовать стеклянную посуду, нержавеющую сталь или специальный полипропилен высокой прочности.

Обычно необходимое количество метанола составляет 20 % от масла по весу, например для использования 100 л отработанного масла потребуется 20 л метанола. При смешивании щелочи и метанола образуется метоксид, реакция экзотермическя, с выделением тепла.


Правила работы с метанолом.

Метанол-яд! Соблюдать максимальные меры предосторожности! Нельзя вдыхать пары, необходимо избегать открытых источников огня, использовать защитные средства для кожи, в случае случайного контакта промыть большим количеством воды. В процессе работы недопустимо присутствие детей и домашних животных!

В процессе реакции масло просто нагревается до определенной температуры (для ускорения химической реакции) и добавляется смесь катализатора и спирта. Некоторое время смесь перемешивается и отстаивается. В результате успешной реакции смесь должна расслоиться, образуя биодизель в верхнем слое, называемый химически « эфир», затем слой, содержащий много мыла и на дне остается глицерин. Глицерин и мыльный слой затем отделяются, а биодизель промывается различными способами для удаления остатков мыла, катализатора и других возможных примесей. После промывок он обезвоживается для удаления остатков воды.

(производство биодизеля в домашних условиях, биотопливо в домашних условиях, биотопливо своими руками, биодизель своими руками)

При обычной температуре реакция проистекает очень медленно или совсем не идет. Нагревание, также как использование кислоты (основания) просто способствут ускорению реакции. Химия процесса одинакова как при работе с небольшими объемами в гараже, так и на больших промышленных мощностях.
При использовании отработанных растительных масел, необходима фильтрация сырья для удаления возможных примесей. Также важно удаление возможной воды для предотвращения гиролиза триглицеридов и образования солей жирных кислот вместо реакции трансэтерификации и образования биодизеля.
В домашних условиях это часто достигается простым нагреванием смеси до 120 °C, при этом вся имеющаяся вода выкипает. В течение этого процесса возможно разбрызгивание, для предотвращения чего операция должна проводиться в достаточно большой емкости, заполненной не более чем на две трети, закрытой, но неплотно.
В лабораторных условиях первоначальное масло просто перемешивается с осушающим агентом, таким как сульфат магния для удаления воды. После этого осушающий агент удаляется простой фильтрацией. Иногда вязкость масла не позволяет хорошо очистить его таким способом.

Шаги процесса

Нейтрализация свободных жирных кислот .

Титрование масла.
При использовании свежего растительного масла количество используемой щелочи постоянно и составляет около 1 % от веса используемого масла. Это 3,5 грамма на литр растительного масла. Но при использовании отработанного масла (более закисленного, с другим содержанием Свободных Жирных кислот) необходимо рассчитать количество добавляемой щелочи, для чего проводят титрование. При титровании используется изопропиловы спирт (так как он не реагирует с маслом). Необходимо провести по меньшей мере, три титрования, чтобы избежать потом ошибок при использовании больших количеств реактивов. Титрованием определяется количество свободных жирных кислот, присутствующих в масле и количество щелочи, необходимое для их нейтрализации.В процессе титрования нужно быть уверенным, что все вещества сухие, и учитывать, что в результате смеситель немного нагреется.

Трансэтерификация.

Рассчитанное количество щелочи после титрования (обычно гидроксида натрия — NaOH) медленно при помешивании растворяется в избытке спирта (для более полного протекания реакции) и эта смесь смешивается с теплым раствором масла при нагревании (обычно около 50 °C) в течение нескольких часов (4 -8) для прохождения реакции трансэтерификации. Реакционная смесь должна поддерживаться выше точки кипения спирта (около 70 °C), но в некоторых системах из соображений безопасности рекомендуется поддерживать диапазон температур от комнатной до 55 °C. Обычно время реакции составляет от 1 до 10 часов, и при нормальных условиях скорость реакции удваивается при повышении температуры реакции на 10 °C. Для предотвращения испарения спирта реакцию нужно проводить в закрытой емкости, но важно избегать плотно закрытой системы (опасность взрыва).

После завершения реакции на дне осаждается глицерин. Биодизель должен быть цвета меда, в то время как глицерин темнее. При поддержании температуры около 38 С глицерин остается в жидком состоянии и может быть легко удален снизу смесителя отдельным шлангом.
Глицерин, полученный из отработанных масел обычно коричневый и твердеет при температуре 38 С, глицерин из свежего масла остается в жидком состоянии при более низких температурах. Его прекрасно можно использовать, как побочный продукт, предварительно выпарив из него метанол нагреванием до 65,5 С.

Удаление остатков мыла.

Обычно полученный биодизель содержит много растворенных остатков мыла от реакции ионов Na+ с водой. Этого можно попытаться избежать, выпарив предварительно всю воду и стараться не допускать воды при приготовлении метоксида. Важно использовать сухой смеситель. После получения биодизеля лучше дать ему отстояться в течение недели, таким образом все мыльные остатки оседают и уходят при последующей фильтрации. Другой метод заключается в неоднократной промывке водой этих остатков. При первом промывании лучше добавить слегка подкисленную винным уксусом воду, кислота доведет раствор до нейтрального, удаляя любую щелочь, присутствующую в растворе. Некоторые экспериментаторы используют технику « пузырьковой промывки», длительностью около 12 часов
При использовании этанола часто образется эмульсия, от которой можно избавиться просто отстаиванием, центрифугированием, или добавлением низкокипящего (то есть, легко удаляемого) неполярного растворителя, и дальнейшей фильтрацией. Верхний слой — смесь биодизеля и спирта- фильтруется. Избыток спирта можно удалить в процессе выпариванияили дистилляции, или экстрагировать водой, но после биодизель должен быть осушен с помощью осушающего агента.

Определение качества получившегося биодизеля.

Качество получившегося продукта определяется, прежде всего, на глаз и проверкой рН. Проверить кислотность можно с помошью лакмусовой бумажки или обычным лабораторным цифровым рН- метром. Он должен быть нейтральным, 7,0. На вид он должен выглядеть как чистое подсолнечное масло. Не допускается наличие никаких взвесей, примесей, частиц или замутнений. Мутность означает присутствие воды, которая удалается нагреванием, частицы необходимо отфильтровать через 5 микронный фильтр. После первого применения биодизеля обязательно следует проверить топливные фильтры.

Существует множество различных технологий первичной очистки масла с помощью адсорбентов. Также используются различные адсорбенты при очистке (промывке) готового биодизеля. Небходимо использовать фильтры для очитски воды после промывки биодизеля, которые отбирают типичные загрязнители- спирты, кетоны, альдегиды, амины и аммиак, пестициды и гербициды, хлорорганические соединения, фенолы и масла, SО2, углеводороды, летучие соединения, сероводород, меркаптаны и промышленные растворители, другие загрязнители. После прохождения воды через фильтр возможно ее повторное использование или сброс в канализацию.

Биодизель,Биодизельное топливо, спирт, жидкое биотопливо,производство биодизеля в домашних условиях , альтернативная энергия, биодизель своими руками, технология производства биотоплива в домашних условиях,

Которое можно произвести в домашних условиях для использования в своём двигателе без внесения в него изменений? Или Вы проводите своё свободное время в различных пабликах по апокалиптическим сценариям? Во всяком случае есть только два реальных варианта, которые работают в современных двигателях : этанол является наиболее простой и эффективной заменой бензина, а биодизель является альтернативой обычному дизельному топливу, который Вы сможете запустить в дизельном двигателе практически без каких-либо изменений.

И этанол, и биодизель можно сделать в домашних условиях. Но спешим Вас сразу разочаровать - хотя, производство таких альтернатив в домашних условиях возможно и не очень сложно, есть много фактических препятствий делать это на практике. Во-первых, Вам нужно иметь оборудование для производства этанола. Далее, нужна хоть как-то сработанная логистика в виде перевозки немалого количества сырья для изготовления замены бензину и дизелю в домашних условиях. В третьих, производство этанола сродни производству самогона, а это может иметь свои юридические последствия.

Но главное, что следует отметить - это то, что Вам на самом деле не удастся сэкономить деньги, делая этанол или биодизель в домашних условиях, по сравнению с покупкой бензина и дизеля на заправочной станции, если только Вы каким-либо образом не сможете получать сырьевой материал для производства бесплатно.

С точки зрения технологии производство топлива в домашних условиях требует много знаний, опыта и потенциально дорогостоящего сырья, но эта технология, по правде говоря, довольно проста. Создание этанола требует больших затрат времени и сырья, а биодизеля - химических веществ, таких как метанол и щёлочь, но нет никакой реальной технологии, чтобы проверить конечный продукт на пригодность использования в двигателе.

Изготовление Этанола в домашних условиях

Процесс изготовления этанола в домашних условиях практически точно такой же, как самогона, поэтому с ним существуют и аналогичные проблемы в законодательном аспекте.

Но существенным отличием производства этанола от самогона является то, что для этанола требуется гораздо более низкое содержание воды, что может быть достигнуто через несколько проходов перегонки. Но существуют также фильтры, которые способны удалять содержание воды из топливного спирта. На самом деле, некоторые люди, которые используют этанол в своих автомобилях, используют также и проточные фильтры, установленные на выходе из топливного бака, которые отделяют воду и любую другую примесь от этанола.

Итак, конкретный процесс изготовления этанола аналогичен созданию любого вида алкоголя . Он начинается с добытия сырья. Сырьём, также как и при производстве пищевого спирта, может быть что-нибудь вроде кукурузы, картофеля и пшеницы. Исходное сырьё используется для приготовления сусла, который ферментирует сахар и крахмал в спирт, который затем пропускают через самогонный аппарат.

Наиболее эффективным способом производства горючего спирта, действительно, является использование самогонного аппарата, но сложность этанола в том, что Вам придётся прогнать этанол 10 и более раз через аппарат, чтобы достичь достаточно высокого качества топлива, чтобы его можно было использовать в моторе. Мало того, что такое производство энергии для Вашего автомобиля неэффективно, оно также приводит к большой потере этанола, так как он попросту теряется во время каждого перегона.

Самая большая проблема с созданием горючего спирта в домашних условиях - будь то наше время сейчас или какое-то гипотетическое апокалиптическое будущее - это сырьё. Для того, чтобы создать сусло, которое можно дистиллировать в топливный спирт, Вам нужно зерно или другое растительное сырьё в большом изобилии. Если у Вас, к примеру, есть рабочая ферма, то один из самых оптимальных вариантов - это взять кукурузу и выращивать её для производства этанола в домашних условиях.

Кукуруза в настоящее время является основной сельскохозяйственной культурой, которая используется для производства этанола во многих странах, и каждый акр, выращенный специально для производства этанола, даёт около 328 галлонов этанола в год. Это примерно 1 250 литров этанола - то есть порядка 25 полных баков топлива.


Другие культуры, такие как просо, имеют больший потенциал быть гораздо более эффективными для производства топлива для бензинового двигателя в домашних условиях. По данным Министерства энергетики США, урожайность просо превысила 500 галлонов на акр, а идеальные условия могут принести свыше 1 000 галлонов этанола на акр проса.

Но если у Вас нет посевных площадей и времени, чтобы посвятить себя выращиванию кукурузы, просо, сахарной свеклы или чего-нибудь ещё и производства из всего этого этанола в домашних условиях, то увы, для Вас это не будет жизнеспособным проектом.

Изготовление биодизеля в домашних условиях

Биодизель по своему составу очень близок к обычному растительному маслу. Растительное масло и в самом деле способно питать дизельный двигатель, но оно не являются биодизелем, а в двигателе заработает только после существенной модернизации последнего. Но после того, как будут сделаны соответствующие изменения, процесс создания альтернативного топлива для дизеля в домашних условиях из растительного масла не очень сложен. Для того, чтобы сделать растительное масло пригодным для использования в качестве топлива, всё, что Вам нужно сделать - это отфильтровать твёрдые частицы.

Изготовление биодизеля без модернизации дизельного двигателя, однако, можно назвать непростым. Оно включает в себя расщепление химической структуры масла с использованием метанола и щёлочи. Процесс не особо сложный, но важно принять необходимые меры предосторожности, так как и метанол, и щёлочь являются токсичными веществами.


Процесс изготовления биодизельного топлива, в самых основных чертах, начинается с нагревания масла. Точные количества метанола и щелочи затем смешивают вместе и добавляют в масло, что облегчает химический процесс, известный как переэтерификация . Результатом этого процесса является то, что Вы в конечном итоге получаете два продукта: биодизель и глицерин, последний оседает на дно смеси. И, наконец, биодизель должен быть тщательно промыт до того, как будет готов к использованию в качестве топлива.

Самое замечательное в биодизельном топливе является то, что Вы можете сделать его из огромного спектра доступных растительных масел и животных жиров. И Вы даже можете быть в состоянии получить бесплатное сырьё из местных ресторанов. Останется только решить проблему доставки сырья до дома.

Но если у Вас нет источника дешёвого растительного масла или животных жиров, то очевидно, что покупать его для производства биодизеля станет очень невыгодным - литр даже самого некачественного растительного масла стоит 50-60 рублей, что уже дороже литра дизельного топлива. И Вас ещё ждёт затратный процесс производства.

Другой вариант - это изготовить своё ​собственное растительное масло, но это тоже требует соответствующего оборудования, а ещё Вы столкнётесь с вопросом получения сырья для создания масла - большого количества семян подсолнечника, которые Вам нужно будет купить или вырастить самостоятельно.

Конструкцию мотоцикла и дизельного мотора изобретали практически в одно и то же время. Однако эти устройства прошли отдельными путями эволюции. Мало кто мог предположить, что когда-то данные конструкции будут работать в едином ансамбле. Конечно, дизельный мотоцикл - это что-то из разряда экзотики, но современные умельцы собирают и не такие агрегаты.

История

Появился достаточно давно. Гении в механике сумели проделать огромный объем работы. В результате простой велосипед без подвески, укомплектованный обычным моторчиком, стал для многих чудом. Инженеры в ходе решения сложнейших задач смогли поднять уровень энерговооруженности этих двухколесных машин до практически нереальных высот. Они смогли вставить в каждый килограмм веса двухколесной машины по Потом, много позже, мотоциклы обзавелись системами подвески с умной работой, тормозами с ABS, а также различной интересной электроникой, которая управляла дроссельной заслонкой и впускным трактом.

Вся эта работа делалась для того, чтобы сегодня можно было похвастаться перед друзьями, коллегами по работе, близкими и родными. Вы спросите о том, причем тут дизельный мотоцикл. Хоть это и не приобрело массовости, но это крепость, которую еще не удалось взять. Попробуем разобрать эту тему.

Можно начать с определений и названий. - это механическое устройство на основе классического поршневого ДВС, которое работает на дизельном топливе. Главное отличие такого агрегата от привычного, бензинового - это способ приготовления воздушно-топливной смеси, подачи смеси в цилиндр и его зажигания.

В традиционном, бензиновом ДВС топливо соединяется с воздухом еще до того, как оно попадет в цилиндр, и поджигается свечой зажигания. Дизельный мотор работает по другому принципу. Здесь сначала подается воздух, затем воздух сжимается под давлением. После происходит нагрев воздуха до температур, при которых топливо может воспламениться самостоятельно. Дизель впрыскивается в цилиндры через форсунки под серьезным давлением. Однако это еще не все отличия. Основной плюс - это повышенный КПД таких моторов.

Теории Рудольфа Дизеля

Когда ученый проводил дни и ночи в развитии своей работы - «рационального теплового двигателя», которая датируется 1890 годом, он пытался сделать сразу два больших открытия. Так как в цилиндрах смесь сжимается, это позволило значительно улучшить эффективность процесса преобразования в механическую. Также отпала необходимость в свечах для зажигания, ведь тогда их было трудно достать.

Первый дизель

Первый двигатель, который мог нормально работать, создан в 1897 году. Он сразу показал все свои плюсы. КПД нового мотора значительно превышал все бензиновые агрегаты того времени. Затем, в 1903 году, дизелями был оснащен первый корабль, в 1912 - локомотив, в 1922 году - трактор. Дальше его устанавливали на грузовики и легковые авто. Логически после всего этого должен был появится дизельный мотоцикл, но нет.

«Соляра» и мотоцикл

Экономичность таких моторов стала невыгодной. Мощность с единицы объема оказалась ниже в 1,5 раза в отличие от бензиновых агрегатов. А при малых объемах и вовсе была равна практически нулю. К тому же дизель не приветствует большие обороты.

Ведь так смесь не полностью догорает в цилиндре. Инженеры думали как-нибудь разработать и поставить дизельный двигатель на мотоцикл, но был необходим большой объем, возникали трудности при попытках завести огромную машину. Однако это не остановило энтузиастов. Благодаря таким людям нереальные идеи становятся реальностью.

Дизельный мотоцикл «Днепр»

Сегодня подобные транспортные средства - это не что иное, как экзотика. Их немного выпускают по всему миру, однако в промышленном масштабе выпуска нет. Но благодаря умельцам и энтузиастам все же кое-где появляются интересные машины, собранные полностью вручную.

Например, у многих при виде агрегата, изображенного ниже, возникает вопрос о том, что случилось с этим мотоциклом, что это за куча железа. Что за чудо? А на самом деле это никакое не чудо, а дизельный мотоцикл «Днепр».

Конструктор и любитель мототехники из небольшого украинского городка в Черниговской области сумел установить на «Днепр» чешский одноцилиндровый дизель. Двигатель был двухтактным, с системой непосредственного впрыска. Эти моторы известны тем, что их часто использовали в разнообразных генераторах, тракторах, компрессорах.

На Украине такой апгрейд обойдется любителям техники в 500 американских долларов, а если мотор прошел заводской капремонт, тогда цена снизится на треть.

Сделать дизельный мотоцикл своими руками реально!

Установить такой мотор в конструкцию двухколесного железного друга не так просто. Для соединения двигателя с инженеру пришлось резать раму, а затем сделать ее длинней на 38 мм. Маховик, который был стандартно установлен на чешском агрегате, не подошел, поэтому создатель конструкции посадил маховик МТ, теперь он работает в паре с родным. Чтобы мотор смог нормально работать с КП, нужно было точить переходник из алюминия. Теперь этот переходник соединяет мотор и коробку.

Особенности конструкции

Осталась такой же, как и была. Однако коробка требовала переделок. Конструктор заменил четвертую передачу, а точнее переставил шестерни в коробке. В результате после переделок передаточное число стало меньше, теперь оно составляет 0,8. Зачем? Дизельный двигатель развивает всего 2200 об/мин.

С такой КП мотор работает отлично. Такой мотоцикл тянет при любых условиях, даже загруженный. По асфальту машина идет со скоростью до 70 км/ч. Это нормально, ведь он создавался не для участия в гонках.

Экономичность

В этом плане все получилось. Двухтактные моторы отличаются повышенным расходом, однако этот дизельный мотоцикл умерил свои аппетиты вдвое. Теперь стандартный расход для него - 3,5 л/100 км.

Далее, так как двигатель достаточно больших размеров, была необходима установка меньшего топливного бака. Также был установлен еще один бак в коляску. Данного запаса топлива мотоциклу хватит на 700 км. Это достаточно хорошо.

Что касается динамичных характеристик, то здесь все тоже вполне нормально. Не быстро, но уверенно машина может набирать скорость до 90 км/ч. Так как охлаждение агрегатов принудительное, то он никогда не перегреется. А это особенно актуально, если мотоцикл загружен различной поклажей и инструментами, да еще и езда предстоит по бездорожью.

Процесс переделки занял 4 года. Однако чистое время на саму переделку - всего 4 месяца. Просто это делалось в свободное время, после работы.

Так, видим, что можно легко и непринужденно, путем небольших вложений и переделок сделать экономичный дизельный мотоцикл «Днепр».

Те, кто любят двухколесных коней с мощными двигателями, вполне смогут самостоятельно их создать. Многие энтузиасты и просто любители иногда делают у себя в гаражах такие вещи, что многих это просто поражает. Сегодняшние байкеры смогут дать фору любому инженеру. Эти люди знают машину до каждого болтика. Некоторые мотоциклы собираются полностью вручную. Тем более что кастомная мототехника - это плод многочисленных переделок и трансформаций. Дизельный мотоцикл «Урал» можно сделать из обычного «Урала» по аналогии с «Днепром». Они братья и очень похожи. А для мастеров мотодела это не составит труда, к тому же это очень увлекательное занятие. Дизельный мотоцикл «Урал» будет гордостью своего создателя!

Для переделки нужно всего на всего заменить топливную систему, заменить карбюратор на форсунки, присоединить мотор к КПП мотоцикла. Так, каждый любитель сможет без труда собрать самодельный дизельный мотоцикл. Конечно, при условии наличия любви к технике и прямых рук.

Например, так тот же любитель двух колес с Украины смог инсталлировать дизель в мотоцикл Jawa. Пускай эта модификация послужит рекомендацией к действию для тех, кто хочет и себе что-нибудь такое.

Дизельная «Ява»

Хоть дизельный двигатель на мотоцикл «Днепр» и был экономичным, энтузиаст и конструктор отлично знал, что предела совершенству нет. Он решил установить более серьезный, четырехтактный мотор в раму «Явы». Для этих целей был использован отечественный цилиндровый дизель с непосредственным впрыском СН-6Д. Экономичность обоснована значительной потерей мощности. Крутящий момент примерно ниже в 2 раза. Однако он выдается при оборотах, которые гораздо меньше оригинальных. Здесь дизельный мотоцикл стандартной бензиновой «Яве».

У коленвал продольный, поэтому чтобы заставить работать его с коробкой из мотоцикла, нужно было проделать большую работу.

Снова была переделана задняя часть мотоцикла. Машина обзавелась новым КП, карданной передачей, маятником, а также иным задним колесом. Все это снято с МТ-10. Маховик установлен на коническую шейку коленвала через переходник. Через прокладку из алюминия к картеру была присоединена КП. Так, мотор стал чуть длинней и перестал помещаться в раму, поэтому был решено ее удлинить. Затем, силовой агрегат был закреплен в удлиненной раме на четыре сайлентблока.

Чтобы закрепить маятник, были приварены новые опоры. Однако пришлось вырезать среднюю часть, чтобы сделать его уже. Чтобы полностью использовать мощность и тягу, была изменена главная передача.

Так как это дизель, то в конструкции аккумулятор не предусматривался. Машина может простоять даже три года, а затем спокойно завестись. Также нет зажигания, противоугонной сигнализации. Благодаря мощному генератору лучше работает свет.

Так, при большом желании и определенном количестве времени установить дизель на мотоцикл - вполне решаемая задача.

Понравилось? Лайкни нас на Facebook